Lilt Labs

Learn and explore everything you need to know about global experience

What We’re Reading: Learning to Decode for Future Success


When doing beam search in sequence to sequence models, one explores next words in order of their likelihood. However, during decoding, there may be other constraints we have or objectives we wish to maximize. For example, sequence length, BLEU score, or mutual information between the target and source sentences. In order to accommodate these additional desiderata, the authors add an additional term Q onto the likelihood capturing the appropriate criterion and then choose words based on this combined objective.

What We’re Reading: Neural Machine Translation with Reconstruction


Neural MT systems generate translations one word at a time. They can still generate fluid translations because they choose each word based on all of the words generated so far. Typically, these systems are just trained to generate the next word correctly, based on all previous words. One systematic problem with this word-by-word approach to training and translating is that the translations are often too short and omit important content. In the paper Neural Machine Translation with Reconstruction, the authors describe a clever new way to train and translate. During training, their system is encouraged not only to generate each next word correctly but also to correctly generate the original source sentence based on the translation that was generated. In this way, the model is rewarded for generating a translation that is sufficient to describe all of the content in the original source.

What We’re Reading: Single-Queue Decoding for Neural Machine Translation


The most popular way of finding a translation for a source sentence with a neural sequence-to-sequence model is a simple beam search. The target sentence is predicted one word at a time and after each prediction, a fixed number of possibilities (typically between 4 and 10) is retained for further exploration. This strategy can be suboptimal as these local hard decisions do not take the remainder of the translation into account and can not be reverted later on.

Technology for Interactive MT


This article describes the technology behind Lilt’s interactive translation suggestions. The details were first published in an academic conference paper, Models and Inference for Prefix-Constrained Machine Translation. Machine translation systems can translate whole sentences or documents, but they can also be used to finish translations that were started by a person — a form of autocomplete at the sentence level. In the computational linguistics literature, predicting the rest of a sentence is called prefix-constrainedmachine translation. The prefix of a sentence is the portion authored by a translator. A suffix is suggested by the machine to complete the translation. These suggestions are proposed interactively to translators after each word they type. Translators can accept all or part of the proposed suffix with a single keystroke, saving time by automating the most predictable parts of the translation process.